Hitchhiker's
Guide to
Golang
Development

Huseyin BABAL

Lead Cloud Engineer @ ' ' namecheap

https://gamma.app/?utm_source=made-with-gamma

About me

Software Development since 2007
Currently working for as cloud engineer, responsible for thousands of servers as a team

You can see me writing code, reading boot, doing mock interviews on Twitch (huseyinbabal)
More &

https://gamma.app/?utm_source=made-with-gamma

What is Go?

Fast and Efficient Simple and

Go is known for its speed and Concise

efficiency, making it ideal for Go's syntax is clean and
performance-critical straightforward, promoting
applications. code readability and

maintainability.

Concurrency-Focu Cross-Platform
sed Compatibility

Go's built-in concurrency Go compiles to native
features allow for efficient executables, enabling it to run
handling of parallel tasks, seamlessly on various

making it suitable for complex operating systems and

applications. architectures.

https://gamma.app/?utm_source=made-with-gamma

Go's history

1 Go's Public Announcement (2009)

Go was publicly announced in 2009, introducing a new systems programming language

focused on simplicity, concurrency, and performance.

2 Go 1.0 (2012)
The first major release of Go, establishing its core features like garbage collection,

concurrency support, and a robust standard library.

3 Go 1.11 (2018)
This release introduced experimental support for Go modules, a significant step towards

improving dependency management and code organization.

a Go 1118 (2022)
Alandmark release featuring the introduction of generics, bringing enhanced type safety

and code reusability to Go.

5 Go 1.20 (2023)
Go 1.20 also included improvements to error handling, allowing for more concise and

informative error messages, which aids in debugging and troubleshooting.

https://gamma.app/?utm_source=made-with-gamma

Building a web crawler capp
with Go

Fetch URL
1 Retrieve the HTML content of a given web page.
Parse HTML
2 Extract relevant data, such as links, text, and images.
Store Data
3 Save the extracted data in a database or other storage mechanism.

Process Data
4 Analyze and manipulate the collected data based on the specific requirements

of the web crawler.

https://gamma.app/?utm_source=made-with-gamma

B

L N

1 func crawl(url string) {

2 resp, err := http.Get(url)

3 if err !'= nil {

4 fmt.Println("Error fetching URL:", err)

5 return

6 }

7 defer resp.Body.Close()

8

9 tokenizer := html.NewTokenizer(resp.Body)

10 for {

1Ll tokenType := tokenizer.Next()

112 if tokenType == html.ErrorToken {

13 break

14 }

15

16 token := tokenizer.Token()

17 if tokenType == html.StartTagToken && token.Data == "a" {
18 for _, attr := range token.Attr {

19 if attr.Key == "href" && strings.HasPrefix(attr.Val, "http")
20 { fmt.Println("Found link:", attr.Val)
211! }

22 Iy

23 } else if tokenType == html.TextToken {

24 fmt.Println("Text:", strings.TrimSpace(token.Data))
25 }

26 }

270k

28

29 func main() {

30 url := "https://example.com"

Sl crawl(url)

878

https://gamma.app/?utm_source=made-with-gamma

Async web crawling
with Go's
concurrency

1

Go Routines 2 Channels
Lightweight threads that Communication channels
allow for concurrent between goroutines,
execution of multiple tasks. enabling data exchange and

synchronization.

Simpllicity of go keyword
The go keyword simplifies the process of launching concurrent

tasks, promoting code readability and maintainability.

https://gamma.app/?utm_source=made-with-gamma

® @ ¢

1
2
3
ot
®
6
/
8
9

10
111

func main() {
urls := [lstringd
“https: //example.com®,
"https://example.net",
"https://example.org”,

}

for _, url := range urls {
go crawl(url)

}

}

https://gamma.app/?utm_source=made-with-gamma

Concurrent Web Crawling with Go

func crawl(url string, wg *sync.WaitGroup) {
defer wg.Done()

func main() {
urls := []string{
"https://example.com",
"https://example.net",
"https://example.org",

wg sync.WaitGroup

_, url := range urls {
wg.Add(1)

go crawl(url, &wg)

}
wg.Wait()

https://gamma.app/?utm_source=made-with-gamma

Converting Crawl Function to a REST Service

1 func crawlHandler(w http.ResponseWriter, r *http.Request) {

2 url := r.URL.Query().Get("url")

3 P Wrl = Y

4 http.Error(w, "URL parameter 'url' is required", http.StatusBadRequest)
5 return

6 ;

7

8 links, err := crawl(url)

9 if err != nil {

10 http.Error(w, fmt.Sprintf("Error crawling URL: %v", err), http.StatusInternalServerError)
1L return

117 }

13

14 w.Header().Set("Content-Type", "application/json")

15 json.NewEncoder(w).Encode(map[string]interface{}{"1links": links})
16 }

117

18

19 func main() {

pA0) http.HandleFunc("/crawl", crawlHandler)

2! fmt.Println("Server listening on :8080")

22 http.ListenAndServe(":8080", nil)

230

https://gamma.app/?utm_source=made-with-gamma

More on web frameworks

Fiber: A fast and minimalist web framework for building efficient and scalable web applications in Go, known for its simplicity

and performance.
Gin: A high-performance, feature-rich web framework that provides a smooth and efficient development experience, with a
focus on developer productivity.

Gorilla Mux: A powerful and flexible HTTP router and URL matcher for building web services in Go, offering advanced routing

capabilities and middleware support.

https://gamma.app/?utm_source=made-with-gamma

Building Go executables

Compile and Build Executable File Cross-Compilation
Use the go build command to The resulting executable file can be Go allows for cross-compilation,
compile your Go code and create a run directly on any system that enabling you to build executables for
standalone executable file. supports Go, without the need for a different operating systems and

Go runtime environment. architectures, even if your

development machine is different.

https://gamma.app/?utm_source=made-with-gamma

OS/architecture support for Go

Operating Systems

aix
android
darwin
dragonfly
freebsd
illumos
ios

< s
linux
netbsd
openbsd
plan9
solaris

windows

Architectures

386
amd64
arm
armo4
mips
mips64
mips64le
mipsle
ppc64
ppc6dle
riscve4
s390x

wasm

https://gamma.app/?utm_source=made-with-gamma

Packaging and distributing your Go app

Github Action Matrix Build

name: Build and Push Docker Image

on:
push:

branches:

- main

jobs:
build-and-push:
runs-on: ubuntu-latest
strategy:
matrix:
go-version: [1.18, 1.19]
0s: [ubuntu-latest, macos-latest, windows-latest]

steps:
- name: Checkout code
uses: actions/checkout@v3

name: Set up Go
uses: actions/setup-go@v3
with:
go-version: ${{ matrix.go-version }}

name: Build Docker image
run: docker build -t your-docker-registry/your-image:${{ matrix.os }}-go${{ matrix.go-version

name: Log in to Docker registry
run: echo "${{ secrets.DOCKER_PASSWORD }}" | docker login your-docker-registry -u ${{
secrets.DOCKER_USERNAME }} --password-stdin

name: Push Docker image
run: docker push your-docker-registry/your-image:${{ matrix.os }}-go${{ matrix.go-version }}

https://gamma.app/?utm_source=made-with-gamma

200
FROM golang:alpine AS builder
WORKDIR /app

COPY go.mod ./
COPY go.sum ./

RUN go mod download

CORY" .

RUN CGO_ENABLED=0 GO0S=1linux GOARCH=amd64 go build -o main .

FROM alpine:latest
WORKDIR /app

COPY --from=builder /app/main .

EXPOSE 8080

CMD ["/app/main]

https://gamma.app/?utm_source=made-with-gamma

Testing

1 Unit Tests 2 Integration

Write tests for individual Tests

functions or components Test how different parts of

ensuring that each piece of your application interact

code works as expected. with each other, validating

the overall functionality.

3 Go's Testing

Framework
GO's built-in testing framework provides tools for writing,

running, and reporting tests, simplifying the testing process.

https://gamma.app/?utm_source=made-with-gamma

package main

func TestCrawl(t *testing.T) {
testCases := []struct {
url string
expected string

H
{url: "https://example.com", expected: "Hello world"},
{url: "https://www.google.com", expected: "Search"},

ls

for _, testCase := range testCases {

if crawl(testCase.url) != testCase.expected {
t.Errorf("Failed for %s", testCase.url)

Iy

https://gamma.app/?utm_source=made-with-gamma

More on testing

TestContainers: A powerful testing framework for creating and managing Docker containers, enabling integration testing of

your Go applications in a realistic environment.

Mockery: A mocking library that allows you to create mock implementations of your Go interfaces, simplifying the testing of

complex dependencies.

https://gamma.app/?utm_source=made-with-gamma

Static Code Analysis with
golangcilint

Automated Code Linting: golangcilint is a powerful static code analysis tool that automatically checks Go code for common

programming errors, stylistic issues, and potential bugs.
Comprehensive Checks: golangcilint runs a wide range of linters, ensuring your code adheres to best practices and

maintainability standards.
Continuous Integration: Integrate golangcilint into your CI/CD pipeline to catch issues early and maintain code quality

throughout the development lifecycle.
Customizable Configuration: Easily configure golangcilint to fit your project's needs, enabling seamless integration with

your development workflow.

https://gamma.app/?utm_source=made-with-gamma

1 linters-settings:

2 errcheck:

B check-blank: true
4 govet:

5) check-shadowing: true
6 golint:

7 min-confidence: 0
8 godox:

9 keywords:

10 - BUG

11 - FIXME

12 - HACK

3 gofmt:

14 simplify: true

15

16 linters:

17 enable-all: true

18 disable:

19 - dupl
pA0) - gocyclo
21 - gocognit
22 - 1
23 - interfacer
24 - maligned
245) - scopelint
26 - structcheck
27 - varcheck
28 - wsl
pA)
30 issues:

31 exclude-rules:
: - path: _test\.go

33 linters:

34 - errcheck
35 - gosec

36 run:

B/ issues-exit-code: 1

38 timeout: 10m

39

40 output:

41 format: colored-line-number

https://gamma.app/?utm_source=made-with-gamma

Performance Analysis with
pprofin Go

Profiling with pprof
pprof is a powerful tool for analyzing CPU, memory, and other performance) — eaunis
characteristics of your Go applications. It helps identify bottlenecks and optimize resource

usage.

CPU Profiling
2 Identify functions consuming the most CPU time using go tool pprof cpu.prof. This

helps pinpoint areas for optimization to improve overall application speed.

Memory Profiling
Detect memory leaks and excessive memory allocation using go tool pprof heap.prof.
Optimize memory management to reduce resource consumption and enhance

performance.

Web Interface
Visualize profiles in a web browser using go tool pprof -http=:8080 cpu.prof.The

interactive interface aids in exploring call graphs and identifying performance bottlenecks.

https://gamma.app/?utm_source=made-with-gamma

Profiling Go Applications with
pprof

Enable pprof Endpoint
1 Import the net/http/pprof package to enable the pprof debugging endpoints in your Go application.

Collect Profiles

2 Use curl to fetch the relevant profiles from the /debug/pprof/ endpoint, such as cpu.prof and heap.prof.
Analyze with pprof
3 Run go tool pprof to explore the profiles and identify performance bottlenecks in your application.

Visuadlize with Web Ul

4 Start the pprof web server to interactively visualize the profiles in a browser and better understand your application's performance.

https://gamma.app/?utm_source=made-with-gamma

View Functions Refine search regexp honeyelb inuse_space

| e
oot &m ~— —
"4 r e — 77;7' —— o
9223.60kB [5607.38kB . 2048.99kB ~_ 1034.19kB —_ 1024.58kB __ 512.14kB
"\\ Sl ~
. > { coc iy ey g ety
com homeycombea honeyelb publinber (*Parver) com honeycombio libboney g0 SaiConn | ereCocm
0.0 9273 6O0AB (47.42%) — s g e o g
ot 0 of 208 9B (10.57% 00 1034 1B (5.32%) h
102402k _1024.12kB 1024.42kB "\ 1024.57kB 1034.19kB \ \1024.58kB 512.14kB
) s \ \ X \ L
/ et Py | { oond (o net/http
S =Sy 7175.46kB | o Tason)
S ! | ':;:f oot m"-l-n.:;mi dialConn
7 0 of 1024 18 (3.27%) 0ol 104578 (S27%) | 0 0f 1034, 1988 (5.32%) 512.14kB (2.63%)
7 I e . . L D
K / A ‘ \ \ N
PRI [costenmaiiesndmaioyte | [) \ .
- | 1024.12kB 560738k [e \ 512.01kB | 512.12kB . 522.06kB . 1024.58kB
0 of M2AOZKS (5.20%) | oot u:;-m \ N\
f ; \
ub | \ \ \
/honeycomb g‘hh Ib/vendor/github e 1’ [A | . 3 . .| P
o/ cxmeoneycombloftonsyuibivandesghiady \ | runtime nevhttp comboneycombiohaneyelbvendor/giub 2. voard
mm/hweymbhmey-so T | 1024.42kB | conT2E NewRequest com hooescormbi Wby £ P Y
() ‘ 512.01KB (263%) | 512.12kB (2.63%) o] PPirrt-rrea
NmEvmt 0ol 5607. (2887%) \ L - - —
1024.12kB (5.27%) \ \
gt
com haneycombio honeyelb vendor github
e " 3046.92kB | 2560.46kB R 522.06kB 1024.58kB
o-nm':a-n \
b \ = 2 /
mam Cuem honey combeo boney el vendor gttt compres g2ip. aypots
17175.46kB Gpatiteg oo g e ‘ e b
0 of 30469288 (15.66%) : \ Odm-‘_lﬂm 0 of 10245848 (5.27%)
[T / l \ "

https://www.honeycomb.io/wp-content/uploads/2017/08/screenl.pn

https://gamma.app/?utm_source=made-with-gamma
https://www.honeycomb.io/wp-content/uploads/2017/08/screen1.png

Monitoring and Observability with

Go OpenTelemetry

Tracking
Application
Performance
Go OpenTelemetry

provides a comprehensive
suite of tools to monitor
the performance of your
Go applications, including
capturing metrics, traces,

and logs.

Database
Connection
Insights

OpenTelemetry can track
the health and
performance of your
database connections,
helping you identify and
resolve issues with data

access.

End-to-End
Visibility

By integrating
OpenTelemetry across
your services, you gain
end-to-end visibility into
your application's
behavior, enabling you to
troubleshoot problems

more effectively.

Vendor-Agnost
ic
Instrumentatio

n
OpenTelemetry's

vendor-neutral approach
allows you to use the same
instrumentation across
various cloud providers
and observability

platforms.

https://gamma.app/?utm_source=made-with-gamma

Opentelemetry with Code Examples

®0

import (

"go.opentelemetry.io/otel"
"go.opentelemetry.io/otel/exporters/stdout/stdouttrace"
"go.opentelemetry.io/otel/trace"

func setupTracing() {

exporter, _ := stdouttrace.New()

9 tracerProvider := trace.NewTracerProvider(trace.WithBatcher(exporter))
10 otel.SetTracerProvider(tracerProvider)

1l 3

117

13 import (

14 "net/http"

15 "go.opentelemetry.io/contrib/instrumentation/net/http/otelhttp"

16)

17

18 func main() {

19 handler := http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
20 w.Write([]byte("Hello, World!"))

2 })

22 wrappedHandler := otelhttp.NewHandler(handler, "hello-handler")

23

24 http.ListenAndServe(":8080", wrappedHandler)

745)

1l
2
3
4
5)
6
7
8

https://gamma.app/?utm_source=made-with-gamma

Opentelemetry with Code

Examples

] .

import (

"database/sql"
"go.opentelemetry.io/contrib/instrumentation/database/sql/otelsql”
_ "github.com/lib/pqg"

1l
2
3
4
5)
6
7 func main() {
8

driverName, _ := otelsql.Register("postgres", otelsql.WithAttributes())
9 db, _ := sql.Open(driverName, "postgres://user:pass@localhost/dbname")
10 defer db.Close()
11
117 db.Query("SELECT * FROM users")

13}

https://gamma.app/?utm_source=made-with-gamma

How many PRs in 20247

Ranking Programming Language Percentage (YoY Change) YoY Trend

Python 16.925% (

NEVE] 11.708% ¢

10.262% (

JavaScript 9.859% (

9.459% (

https://madnight.qithub.io/qithut/#/pull requests/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/pull_requests/2024/1

How many issues in 20247

Ranking Programming Language Percentage (YoY Change) YoY Trend

Python 16.278% ()

Java 11.453% ¢)

(G 10.370% (

TypeScript 10.064% (

JavaScript 9.939% (

Go 8.987% (

5.765% (

5.691% (

4.688% (

2.413% (

https://madnight.qithub.io/qithut/#/issues/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/issues/2024/1

How many stars in 20247

Ranking Programming Language Percentage (YoY Change) YoY Trend

1 Python 18.172% ¢)
2 JavaScript 15.278% ()

12.275%
9.750%

NEVE] 7.959% (

https://madnight.qithub.io/qithut/#/stars/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/stars/2024/1

How many pushes in 20247?

Ranking Programming Language Percentage (YoY Change) YoY Trend

Python

16.219% ()

NEVE]

11.851% ()

JavaScript

11.003% (

C++

10.069% (

TypeScript

7.694% (

PHP

7.692% (

Go

6.809% (

C

4.865% (

4.567% (

https://madnight.qithub.io/qithut/#/pushes/2024/1

3.329% (

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/pushes/2024/1

What do you waiting for?

It's Go Time

e

I d —

@ Made with Gamma

https://gamma.app/?utm_source=made-with-gamma

Thank you

lllll

ccccc

!!!!!
lllll
ccccc
.....

Tene

https://gamma.app/?utm_source=made-with-gamma

