
Hitchhiker's 
Guide to 
Golang 
Development
Huseyin BABAL

Lead Cloud Engineer @ 

https://gamma.app/?utm_source=made-with-gamma


About me
● Software Development since 2007
● Currently working for Namecheap as cloud engineer, responsible for thousands of servers as a team
● You can see me writing code, reading boot, doing mock interviews on Twitch (huseyinbabal)
● More 👇 

 

https://gamma.app/?utm_source=made-with-gamma


What is Go?
Fast and Efficient
Go is known for its speed and 

efficiency, making it ideal for 

performance-critical 

applications.

Simple and 
Concise
Go's syntax is clean and 

straightforward, promoting 

code readability and 

maintainability.

Concurrency-Focu
sed
Go's built-in concurrency 

features allow for efficient 

handling of parallel tasks, 

making it suitable for complex 

applications.

Cross-Platform 
Compatibility
Go compiles to native 

executables, enabling it to run 

seamlessly on various 

operating systems and 

architectures.

https://gamma.app/?utm_source=made-with-gamma


Go's history

1 Go's Public Announcement (2009)
Go was publicly announced in 2009, introducing a new systems programming language 

focused on simplicity, concurrency, and performance.

2 Go 1.0 (2012)
The first major release of Go, establishing its core features like garbage collection, 

concurrency support, and a robust standard library.

3 Go 1.11 (2018)
This release introduced experimental support for Go modules, a significant step towards 

improving dependency management and code organization.

4 Go 1.18 (2022)
A landmark release featuring the introduction of generics, bringing enhanced type safety 

and code reusability to Go.

5 Go 1.20 (2023)
Go 1.20 also included improvements to error handling, allowing for more concise and 

informative error messages, which aids in debugging and troubleshooting.

 

https://gamma.app/?utm_source=made-with-gamma


Building a web crawler app 
with Go

Fetch URL
Retrieve the HTML content of a given web page.

Parse HTML
Extract relevant data, such as links, text, and images.

Store Data
Save the extracted data in a database or other storage mechanism.

Process Data
Analyze and manipulate the collected data based on the specific requirements 

of the web crawler.

 

https://gamma.app/?utm_source=made-with-gamma


 

https://gamma.app/?utm_source=made-with-gamma


Async web crawling 
with Go's 
concurrency
1 Go Routines

Lightweight threads that 

allow for concurrent 

execution of multiple tasks.

2 Channels
Communication channels 

between goroutines, 

enabling data exchange and 

synchronization.

3 Simplicity of go keyword
The go keyword simplifies the process of launching concurrent 

tasks, promoting code readability and maintainability.

https://gamma.app/?utm_source=made-with-gamma


 

https://gamma.app/?utm_source=made-with-gamma


Concurrent Web Crawling with Go

 

https://gamma.app/?utm_source=made-with-gamma


Converting Crawl Function to a REST Service

 

https://gamma.app/?utm_source=made-with-gamma


More on web frameworks
Fiber: A fast and minimalist web framework for building efficient and scalable web applications in Go, known for its simplicity 

and performance.

Gin: A high-performance, feature-rich web framework that provides a smooth and efficient development experience, with a 

focus on developer productivity.

Gorilla Mux: A powerful and flexible HTTP router and URL matcher for building web services in Go, offering advanced routing 

capabilities and middleware support.

 

https://gamma.app/?utm_source=made-with-gamma


Building Go executables

Compile and Build

Use the go build command to 

compile your Go code and create a 

standalone executable file.

Executable File

The resulting executable file can be 

run directly on any system that 

supports Go, without the need for a 

Go runtime environment.

Cross-Compilation

Go allows for cross-compilation, 

enabling you to build executables for 

different operating systems and 

architectures, even if your 

development machine is different.

 

https://gamma.app/?utm_source=made-with-gamma


OS/architecture support for Go
Operating Systems

• aix

• android

• darwin

• dragonfly

• freebsd

• illumos

• ios

• js

• linux

• netbsd

• openbsd

• plan9

• solaris

• windows

Architectures

• 386

• amd64

• arm

• arm64

• mips

• mips64

• mips64le

• mipsle

• ppc64

• ppc64le

• riscv64

• s390x

• wasm

 

https://gamma.app/?utm_source=made-with-gamma


Packaging and distributing your Go app
Github Action Matrix Build

 

https://gamma.app/?utm_source=made-with-gamma


 

https://gamma.app/?utm_source=made-with-gamma


Testing

1 Unit Tests
Write tests for individual 

functions or components, 

ensuring that each piece of 

code works as expected.

2 Integration 
Tests
Test how different parts of 

your application interact 

with each other, validating 

the overall functionality.

3 Go's Testing 
Framework
Go's built-in testing framework provides tools for writing, 

running, and reporting tests, simplifying the testing process.

https://gamma.app/?utm_source=made-with-gamma


 

https://gamma.app/?utm_source=made-with-gamma


More on testing
TestContainers: A powerful testing framework for creating and managing Docker containers, enabling integration testing of 

your Go applications in a realistic environment.

Mockery: A mocking library that allows you to create mock implementations of your Go interfaces, simplifying the testing of 

complex dependencies.

 

https://gamma.app/?utm_source=made-with-gamma


Static Code Analysis with 
golangcilint

Automated Code Linting: golangcilint is a powerful static code analysis tool that automatically checks Go code for common 

programming errors, stylistic issues, and potential bugs.

Comprehensive Checks: golangcilint runs a wide range of linters, ensuring your code adheres to best practices and 

maintainability standards.

Continuous Integration: Integrate golangcilint into your CI/CD pipeline to catch issues early and maintain code quality 

throughout the development lifecycle.

Customizable Configuration: Easily configure golangcilint to fit your project's needs, enabling seamless integration with 

your development workflow.

 

https://gamma.app/?utm_source=made-with-gamma


 

https://gamma.app/?utm_source=made-with-gamma


Performance Analysis with 
pprof in Go

Profiling with pprof
pprof is a powerful tool for analyzing CPU, memory, and other performance 

characteristics of your Go applications. It helps identify bottlenecks and optimize resource 

usage.

CPU Profiling
Identify functions consuming the most CPU time using go tool pprof cpu.prof. This 

helps pinpoint areas for optimization to improve overall application speed.

Memory Profiling
Detect memory leaks and excessive memory allocation using go tool pprof heap.prof. 

Optimize memory management to reduce resource consumption and enhance 

performance.

Web Interface
Visualize profiles in a web browser using go tool pprof -http=:8080 cpu.prof. The 

interactive interface aids in exploring call graphs and identifying performance bottlenecks.

https://gamma.app/?utm_source=made-with-gamma


Profiling Go Applications with 
pprof

Enable pprof Endpoint
Import the net/http/pprof package to enable the pprof debugging endpoints in your Go application.

Collect Profiles
Use curl to fetch the relevant profiles from the /debug/pprof/ endpoint, such as cpu.prof and heap.prof.

Analyze with pprof
Run go tool pprof to explore the profiles and identify performance bottlenecks in your application.

Visualize with Web UI
Start the pprof web server to interactively visualize the profiles in a browser and better understand your application's performance.

 

https://gamma.app/?utm_source=made-with-gamma


https://www.honeycomb.io/wp-content/uploads/2017/08/screen1.png

 

https://gamma.app/?utm_source=made-with-gamma
https://www.honeycomb.io/wp-content/uploads/2017/08/screen1.png


Monitoring and Observability with 
Go OpenTelemetry
Tracking 
Application 
Performance
Go OpenTelemetry 

provides a comprehensive 

suite of tools to monitor 

the performance of your 

Go applications, including 

capturing metrics, traces, 

and logs.

Database 
Connection 
Insights
OpenTelemetry can track 

the health and 

performance of your 

database connections, 

helping you identify and 

resolve issues with data 

access.

End-to-End 
Visibility
By integrating 

OpenTelemetry across 

your services, you gain 

end-to-end visibility into 

your application's 

behavior, enabling you to 

troubleshoot problems 

more effectively.

Vendor-Agnost
ic 
Instrumentatio
n
OpenTelemetry's 

vendor-neutral approach 

allows you to use the same 

instrumentation across 

various cloud providers 

and observability 

platforms.

 

https://gamma.app/?utm_source=made-with-gamma


Opentelemetry with Code Examples

 

https://gamma.app/?utm_source=made-with-gamma


Opentelemetry with Code 
Examples

 

https://gamma.app/?utm_source=made-with-gamma


How many PRs in 2024?

 https://madnight.github.io/githut/#/pull_requests/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/pull_requests/2024/1


How many issues in 2024?

 https://madnight.github.io/githut/#/issues/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/issues/2024/1


How many stars in 2024?

 https://madnight.github.io/githut/#/stars/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/stars/2024/1


How many pushes in 2024?

 https://madnight.github.io/githut/#/pushes/2024/1

https://gamma.app/?utm_source=made-with-gamma
https://madnight.github.io/githut/#/pushes/2024/1


What do you waiting for?

https://gamma.app/?utm_source=made-with-gamma


Thank you

https://gamma.app/?utm_source=made-with-gamma

